Classification of Analog Modulated Communication Signals using Clustering Techniques: A Comparative Study
نویسندگان
چکیده
In this paper, a comparative study of classification of the analog modulated communication signals using clustering techniques is introduced. Four different clustering algorithms are implemented for classifying the analog signals. These clustering techniques are K-means clustering, fuzzy c-means clustering, mountain clustering and subtractive clustering. Two key features are used for characterizing the analog modulation types. Performance comparison of these clustering algorithms is made using computer simulations.
منابع مشابه
Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملSignal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملExtraction of Respiratory Signal Based on Image Clustering and Intensity Parameters at Radiotherapy with External Beam: A Comparative Study
Background: Since tumors located in thorax region of body mainly move due to respiration, in the modern radiotherapy, there have been many attempts such as; external markers, strain gage and spirometer represent for monitoring patients’ breathing signal. With the advent of fluoroscopy technique, indirect methods were proposed as an alternative approach to extract patients’ breathing signals...
متن کامل